Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Year range
1.
Mathematical Modelling of Natural Phenomena ; 16:1-22, 2021.
Article in English | Academic Search Complete | ID: covidwho-1269396

ABSTRACT

In this work we propose a delay differential equation as a lumped parameter or compartmental infectious disease model featuring high descriptive and predictive capability, extremely high adaptability and low computational requirement. Whereas the model has been developed in the context of COVID-19, it is general enough to be applicable with such changes as necessary to other diseases as well. Our fundamental modeling philosophy consists of a decoupling of public health intervention effects, immune response effects and intrinsic infection properties into separate terms. All parameters in the model are directly related to the disease and its management;we can measure or calculate their values a priori basis our knowledge of the phenomena involved, instead of having to extrapolate them from solution curves. Our model can accurately predict the effects of applying or withdrawing interventions, individually or in combination, and can quickly accommodate any newly released information regarding, for example, the infection properties and the immune response to an emerging infectious disease. After demonstrating that the baseline model can successfully explain the COVID-19 case trajectories observed all over the world, we systematically show how the model can be expanded to account for heterogeneous transmissibility, detailed contact tracing drives, mass testing endeavours and immune responses featuring different combinations of temporary sterilizing immunity, severity-reducing immunity and antibody dependent enhancement. [ABSTRACT FROM AUTHOR] Copyright of Mathematical Modelling of Natural Phenomena is the property of EDP Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

2.
Royal Society Open Science ; 7(9), 2020.
Article in English | Scopus | ID: covidwho-892132

ABSTRACT

The basic reproduction number R0 of the coronavirus disease 2019 has been estimated to range between 2 and 4. Here, we used an SEIR model that properly accounts for the distribution of the latent period and, based on empirical estimates of the doubling time in the near-exponential phases of epidemic progression in China, Italy, Spain, France, UK, Germany, Switzerland and New York State, we estimated that R0 lies in the range 4.7-11.4. We explained this discrepancy by performing stochastic simulations of model dynamics in a population with a small proportion of super-spreaders. The simulations revealed two-phase dynamics, in which an initial phase of relatively slow epidemic progression diverts to a faster phase upon appearance of infectious super-spreaders. Early estimates obtained for this initial phase may suggest lower R0. © 2020 The Authors.

SELECTION OF CITATIONS
SEARCH DETAIL